
## **Accelerated Extinction Profiles for Anomaly Detection in Fluvial Ecosystems**



Javier López-Fandiño<sup>1</sup>, Dora B. Heras<sup>1</sup>, and Francisco Argüello<sup>2</sup> Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS) <sup>2</sup>Departamento de Electrónica e Computación. Universidade de Santiago de Compostela



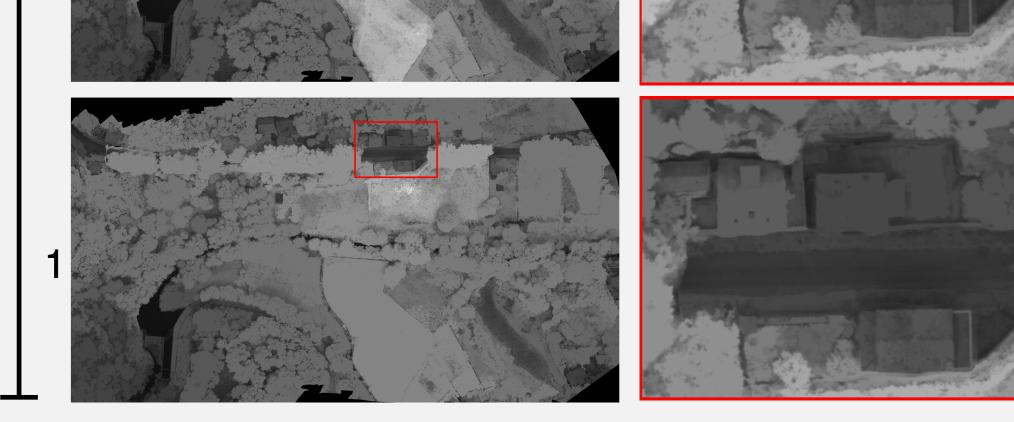
New multispectral sensors, which are capable of capturing high resolution images through low altitude drone flights, offer access to a wealth of information about the Earth's surface at a significantly lower cost than other imaging devices. The process of identifying unexpected patterns within an image that do not conform to the expected behavior is known as anomaly detection (AD). When applied to fluvial ecosystem monitoring, this involves detecting the existence of small constructions or roads that allow automatic alarms to be produced for the people in charge of monitoring the ecosystem. The extraction of spatial information is a critical step in AD, since it determines the final quality of the AD and it is a computationally expensive processing. In this work, Extinction Profiles (EP) are selected to perform a multilevel implicit segmentation of the image, thus extracting the spatial information of relevance. A computationally efficient implementation of the EP-based spatial extraction of information for multidimensional images is proposed in this paper, as it is a basic step in the detection of anomalies in natural ecosystems. The proposed method takes advantage of heterogeneous computing to perform the task in a reduced execution time.

## Anomaly Detection Scheme

| Spatial Processing | Spectral Processing | E             | P Algorithm:                                                                                       |                                                                                                                                                                                                                                                                                                                      |
|--------------------|---------------------|---------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [CPU-GPU]          | [GPU]               | lin<br>Ot     | put: Image band.<br>Output: EP of band.<br>Parameters: Nº of extrema to be kept at each level of E | EP. Input: Stacked EPs.                                                                                                                                                                                                                                                                                              |
|                    |                     |               | pening                                                                                             |                                                                                                                                                                                                                                                                                                                      |
| Input              |                     | Output<br>- C | - Get parents of each node (union-find).<br>- Compute node array.<br>Compute extinction values.    | <ul> <li>&lt; GPU &gt;</li> <li>&lt; Compute mean vector.</li> <li>&lt; GPU &gt;</li> <li>&lt; Compute covariance matrix.</li> <li>&lt; GPU &gt;</li> <li>&lt; Invert covariance matrix.</li> <li>&lt; GPU &gt;</li> <li>&lt; CPU &gt;</li> <li>&lt; Compute Mahalanobis distance.</li> <li>&lt; GPU &gt;</li> </ul> |

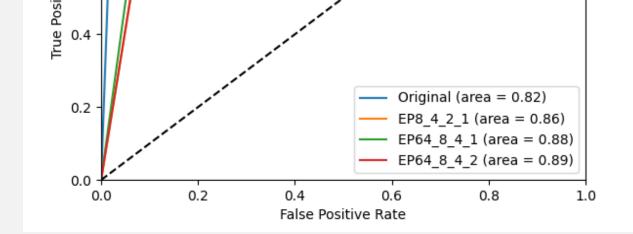
|                     |                                   |       |                           |                        |        | <ul> <li>Calculate extinction filter.</li> <li>Get filtered image.</li> </ul>                                                                                                                                                 | < CPU - GPU ><br>< GPU >                                     |                                                                                                                                                                                                    |                                          |
|---------------------|-----------------------------------|-------|---------------------------|------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                     |                                   | 7     |                           |                        |        | Negate image                                                                                                                                                                                                                  | < GPU >                                                      | <b>Otsu's thesholding Algorithm:</b>                                                                                                                                                               |                                          |
|                     | $\longrightarrow$                 |       |                           |                        |        | Closing                                                                                                                                                                                                                       |                                                              | Input: RX image.<br>Output: AD map.                                                                                                                                                                |                                          |
| Multispectral image | Bands EPs                         |       | Stacked EPs RX            | image                  | AD map | <ul> <li>Max-tree computation:</li> <li>Reorder image and indexes.</li> <li>Get parents of each node (union-find).</li> <li>Compute node array.</li> <li>Compute extinction values.</li> <li>For each level in EP:</li> </ul> | < GPU ><br>< CPU ><br>< CPU ><br>< CPU - GPU ><br>< OpenMP > | <ul> <li>Rescale image between [0, 255].</li> <li>Compute image histogram.</li> <li>Calculate threshold value by Otsu's method.</li> <li>Generate binary image regarding the threshold.</li> </ul> | < GPU ><br>< GPU ><br>< GPU ><br>< GPU > |
|                     | Extinction Profile<br>application | Stack | Reed - Xiaoli<br>detector | Otsu's<br>thresholding |        | - Calculate extinction filter.<br>- Get filtered image.                                                                                                                                                                       | < CPU - GPU ><br>< GPU >                                     |                                                                                                                                                                                                    |                                          |

Extinction Profile of one band


## Oitavén River Dataset



RGB color composition


Reference data of anomalies

|                    |   | Dataset descriptio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                      |                                                                                                                                                                                            |                                        | Sensor information                                                                                                                                                               |                                                | Spectra                                        | I bands                                                      |
|--------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
|                    | 8 | - Spatial dimensionality<br>- Spectral dimensionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2141 x 3807<br>5 bands | <ul> <li>Reference data pixel distribution:</li> <li>Number of anomalies</li> <li>Number of non anomalies</li> <li>Percentage of anomalies</li> <li>Percentage of non anomalies</li> </ul> | 321710<br>7829077<br>3.95 %<br>96.05 % | <ul> <li>Sensor: MicaSense RedEdge ma<br/>camera mounted on a custom U</li> <li>Spatial resolution: 8.2 cm/pixel.</li> <li>Height: 120 meters</li> </ul>                         |                                                | - 560 n<br>- 668 n<br>- 717 n                  | nm (Blue)<br>nm (Green)<br>nm (Red)<br>nm (Edge)<br>nm (NIR) |
|                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Accuracy an                                                                                                                                                                                | d Per                                  | formance Results                                                                                                                                                                 | <u>,</u>                                       |                                                |                                                              |
|                    |   | and the second in the second i |                        |                                                                                                                                                                                            |                                        | Experimenta                                                                                                                                                                      | al setup                                       |                                                |                                                              |
| Original<br>band   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                            | 1 -                                    | 2th Gen Intel(R) Core(TM) i7-127<br>8 performance cores 3.6 GHz, 4 efficie<br>64 GB DDR4 RAM. 125-190 W.<br>VIDIA GeForce RTX 3080<br>8960 CUDA cores. 1.26 GHz. 12 GB G         | ent cores. 2.7                                 |                                                | 3 cache.                                                     |
|                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                            |                                        | EP of one band ex                                                                                                                                                                | cecution <sup>*</sup>                          | times                                          |                                                              |
| _                  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                            | Co                                     | mputation step:                                                                                                                                                                  | OpenMP                                         | OpenMP<br>+ CUDA                               | Speedup                                                      |
|                    | 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                            | - M                                    | ening<br>ax-tree computation:<br>Reorder image and indexes.                                                                                                                      | 0.0852                                         | 0.0157                                         | 5.4x                                                         |
|                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anomaly Dete<br>ROC cu | •                                                                                                                                                                                          | - C                                    | Get parents of each node (union-find).<br>Compute node array.<br>ompute extinction values.<br>P application at all levels.                                                       | 0.4447<br>0.1199<br>0.0141<br>0.1937           | 0.3962<br>0.1177<br>0.0109<br>0.0365           | 1.1x<br>1.0x<br>1.3x<br>5.3x                                 |
|                    |   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Receiver operating cha | racteristic curve                                                                                                                                                                          | Ne                                     | gate image<br>osing                                                                                                                                                              | 0.0481                                         | 0.0002                                         | 235.7x                                                       |
| Closing<br>profile |   | - 8.0<br>- 9.0 Bate<br>- 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | ****                                                                                                                                                                                       | -<br>-<br>- C                          | ax-tree computation:<br>Reorder image and indexes.<br>Get parents of each node (union-find).<br>Compute node array.<br>ompute extinction values.<br>P application at all levels. | 0.0826<br>0.3953<br>0.1081<br>0.0065<br>0.1875 | 0.0159<br>0.3886<br>0.1054<br>0.0054<br>0.0294 | 5.2x<br>1.0x<br>1.0x<br>1.2x<br>6.4x                         |
|                    |   | 0.2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | <ul> <li>Original (area = 0.82)</li> <li>EP8_4_2_1 (area = 0.86)</li> <li>EP64_8_4_1 (area = 0.88)</li> <li>EP64_8_4_2 (area = 0.89)</li> </ul>                                            | Tot                                    | al<br>Execution times in seco                                                                                                                                                    | 1.6858<br>onds with gcc com                    | <b>1.1217</b><br>npiler O3 optimization        | 1.5x<br>tion level activated.                                |



Extinction filter at different levels

Detail of anomalies



Accuracy results

AUC

0.818

0.865

0.876

0.888

**EP Configuration** 

No EP

EP\_8\_4\_2\_1

EP\_64\_8\_4\_1

EP\_64\_8\_4\_2

| AD execution times |  |
|--------------------|--|
|                    |  |

| <b>OpenMP</b> | OpenMP<br>+ CUDA            | Speedup                                                    |
|---------------|-----------------------------|------------------------------------------------------------|
| 8.4288        | 5.6087                      | 1.5x                                                       |
| 16.8466       | 1.1856                      | 14.2x                                                      |
| 0.0055        | 0.0046                      | <b>1.2</b> x                                               |
| 25.2809       | 6.7989                      | 3.7x                                                       |
|               | 8.4288<br>16.8466<br>0.0055 | + CUDA<br>8.4288 5.6087<br>16.8466 1.1856<br>0.0055 0.0046 |

## References



- · Ghamisi, P., Souza, R., Rittner, L., Benediktsson, J. A., Lotufo, R., & Zhu, X. X. (2016, July). Extinction profiles: A novel approach for the analysis of remote sensing data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5122-5125). IEEE.
- Reed, I. S., & Yu, X. (1990). Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE transactions on acoustics, speech, and signal processing, 38(10), 1760-1770.
- Ghamisi, P., Souza, R., Benediktsson, J. A., Zhu, X. X., Rittner, L., & Lotufo, R. A. (2016). Extinction profiles for the classification of remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 5631-5645.
- · An OpenMP + CUDA computationally efficient implementation of the EP-based spatial extraction of information for
- multidimensional images is proposed.
- · Thrust library is used in both implementations to speed up sorting operations.

% of anomalies detected

65.46

83.06

83.90

88.32

- EPs are combined with the Reed-Xiaoli anomaly detection algorithm to improve the detection of anomalies in fluvial ecosystems.
- · The proposed method takes advantage of heterogeneous computing to perform the task in a reduced execution time.
- Experiments were performed over high-dimensionality images of fluvial ecosystems, achieving speedups up to 3.7x.